203 research outputs found

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Energy Detection UWB Receiver Design using a Multi-resolution VHDL-AMS Description

    Get PDF
    Ultra Wide Band (UWB) impulse radio systems are appealing for location-aware applications. There is a growing interest in the design of UWB transceivers with reduced complexity and power consumption. Non-coherent approaches for the design of the receiver based on energy detection schemes seem suitable to this aim and have been adopted in the project the preliminary results of which are reported in this paper. The objective is the design of a UWB receiver with a top-down methodology, starting from Matlab-like models and refining the description down to the final transistor level. This goal will be achieved with an integrated use of VHDL for the digital blocks and VHDL-AMS for the mixed-signal and analog circuits. Coherent results are obtained using VHDL-AMS and Matlab. However, the CPU time cost strongly depends on the description used in the VHDL-AMS models. In order to show the functionality of the UWB architecture, the receiver most critical functions are simulated showing results in good agreement with the expectations

    The Authority of Distributed Consensus Systems Trust, Governance, and Normative Perspectives on Blockchains and Distributed Ledgers

    Get PDF
    The subjects of this dissertation are distributed consensus systems (DCS). These systems gained prominence with the implementation of cryptocurrencies, such as Bitcoin. This work aims at understanding the drivers and motives behind the adoption of this class of technologies, and to – consequently – evaluate the social and normative implications of blockchains and distributed ledgers. To do so, a phenomenological account of the field of distributed consensus systems is offered, then the core claims for the adoption of systems are taken into consideration. Accordingly, the relevance of these technologies on trust and governance is examined. It will be argued that the effects on these two elements do not justify the adoption of distributed consensus systems satisfactorily. Against this backdrop, it will be held that blockchains and similar technologies are being adopted because they are regarded as having a valid claim to authority as specified by Max Weber, i.e., herrschaft. Consequently, it will be discussed whether current implementations fall – and to what extent – within the legitimate types of traditional, charismatic, and rational-legal authority. The conclusion is that the conceptualization developed by Weber does not capture the core ideas that appear to establish the belief in the legitimacy of distributed consensus systems. Therefore, this dissertation describes the herrschaft of systems such as blockchains by conceptualizing a computational extension of the pure type of rational-legal authority, qualified as algorithmic authority. The foundational elements of algorithmic authority are then discussed. Particular attention is focused on the idea of normativity cultivated in systems of algorithmic rules as well as the concept of decentralization. Practical suggestions conclude the following dissertation

    A 1-bit Synchronization Algorithm for a Reduced Complexity Energy Detection UWB Receiver

    Get PDF
    This work investigates the possibility of performing synchronization in a reduced complexity Energy Detection receiver. A new receiver scheme employing a single comparator only is defined and the related synchronization algorithm is presented. The possibility of synchronizing has been analyzed both for an idealized Dirac Delta input signal and for realistic UWB signals obtained through the TG4a channel model. The matlab simulations show that it is possible to obtain coarse synchronization using a simple maximum detection algorithm computed on collected energies for the ideal case of Dirac Delta pulses. For realistic UWB signals better synchronization performances are possible by employing a searchback algorithm. Due to the low complexity of the receiver scheme, the synchronization algorithm requires a long locking time

    A Low-power CMOS 2-PPM Demodulator for Energy Detection IR-UWB Receivers

    Get PDF
    This paper presents an integrated 2-PPM CMOS demodulator for non-coherent energy detection receivers which inherently provides analog-to-digital conversion. The device, called Bi-phase integrator, employs an open loop Gm - C integrator loaded with a switched capacitor network. The circuit has been simulated in a mixed-mode UMC 0.18mum technology and its performance figures are obtained through a mixed-signal simulation environment developed with the aid of ADVanceMS (ADMS, mentor graphics). Bit-error-rate simulations show that the circuit performance is about the same of an ideal energy detection receiver employing infinite quantization resolution. In addition, the simulations show that the circuit provides a complete offset rejection. Thanks to its low power consumption (1 mW during demodulation), its application is appealing for portable devices which aim at very low-power consumption

    An effective AMS Top-Down Methodology Applied to the Design of a Mixed-SignalUWB System-on-Chip

    Get PDF
    The design of Ultra Wideband (UWB) mixed-signal SoC for localization applications in wireless personal area networks is currently investigated by several researchers. The complexity of the design claims for effective top-down methodologies. We propose a layered approach based on VHDL-AMS for the first design stages and on an intelligent use of a circuit-level simulator for the transistor-level phase. We apply the latter just to one block at a time and wrap it within the system-level VHDL-AMS description. This method allows to capture the impact of circuit-level design choices and non-idealities on system performance. To demonstrate the effectiveness of the methodology we show how the refinement of the design affects specific UWB system parameters such as bit-error rate and localization estimations

    Combined large spin splitting and one-dimensional confinement in surface alloys

    Get PDF
    We have found and characterized by angle-resolved photoelectron spectroscopy (ARPES) quasi-one dimensional spin-split states in chain-like surface alloys formed by large Z elements (Bi and Pb) at the Cu(110) surface. The ARPES results are supported by first-principles relativistic calculations, which also confirm the spin polarization of these states, characteristic of the Rashba-Bychkov effect. The Fermi surface contours are open, but warped, as a result of the interaction with the bulk Cu conduction band. This interaction introduces a k dependence of the spin splitting perpendicular to the chains direction. We have also investigated the influence of the atomic spin-orbit parameter in substitutional isostructural Bi_{1-x}Pb_{x} overlayers, and found that the magnitude of the spin splitting can be continuously tuned as a function of stoichiometry.Comment: 8 pages, 4 figure

    Anisotropic spin gaps in BiAg2_2-Ag/Si(111)

    Full text link
    We present a detailed analysis of the band structure of the BiAg2_2/Ag/Si(111) trilayer system by means of high resolution Angle Resolved Photoemission Spectroscopy (ARPES). BiAg2/Ag/Si(111) exhibits a complex spin polarized electronic structure due to giant spin-orbit interactions. We show that a complete set of constant energy ARPES maps, supplemented by a modified nearly free electron calculation, provides a unique insight into the structure of the spin polarized bands and spin gaps. We also show that the complex gap structure can be continuously tuned in energy by a controlled deposition of an alkali metal.Comment: 6 pages, 5 figure
    • …
    corecore